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Abstract: To introduce characterisations and properties of S-continuous, S-open and S-closed mappings on to TAL. These 

concepts and relevant theory are obtained under the case of no order-reversing involution. They may be useful tool for 

establishing the theory of semi- topological atomistic lattices. 
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Introduction 

Cameron and Woods (1987) introduced the Concepts of S-Continuous mappings and S-open mappings. They investigated the 

properties of these mappings and their relationships to the properties of semi-open sets. Khan and Ahmad (2001) further worked 

on the characterisations and properties of S-continuous, S-open and S-closed mappings. 

In genral topology or fuzzy topology we know that the concepts of semi-open and semi-closed sets depend on the notion of 

open sets or fuzzy open sets. It is known to us traditional neighbourhood (nhd) method is no longer effective in fuzzy topology. 

To overcome this difficulty, Pu and Liu (1980) introduced Q-neighbourhood (Q-nhd) and found it to be effective. It should be 

noticed that in lattice theory there may be no order- reversing involution and hence one can’t define a Q-nhd. For this reason 

Wang Guojan [89] introduced the concept of remote nhd (RN) in Lattice theory, as a generalisation of Q-nhd. Therefore, in lattice 

theory the remote nhd method and Cotopology take main role Guojan (1989). Therefore how to generalise these concepts of semi-

open, semi-closed set on a topological atomistic lattice (TAL) is a fairly significant work.  

Definition 1.2: [Chang 1968] A fuzzy topology on a non- empty set X is a family T of fuzzy subsets of X which satisfies the 

following three conditions  

I. , x  T 

II. A, B  T  A  B  T 

III. Ai  T for each i  I   Ai  T  

The pair (X, T) is called a fuzzy topological space or ƒ + S. Every member of T is called T-Open fuzzy set (or simply open 

fuzzy set). A fuzzy set is T-closed iff its complement AC (or 1- A) is T-open. 

As in general topology, the indiscrete fuzzy contains  and X, while the discrete fuzzy topology all fuzzy sets. 

Definition 1.3: [Pu and Lie, 1980]. The fuzzy subset xa of a non- empty set X with x  X and 0  a  1 defined by  

 
 if 

( )
0, otherwise

a

a p x
x p


 
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is called a fuzzy point in X with support x and value a. 

In this chapter we shall always consider L, a complete distributive atomistic lattice [Maeda & Maeda, 1970] unless or 

otherwise stated and Lo, the subset of the set of all atoms of L so that every element in L can be represented as a join of elements 

in Lo 

Definition 1.4: [Jha and Parhi, 2003] Let T  L, 0, 1 T is closed under the operation of finite join and arbitrary meet. Then we 

call T, a Co- topology on L and elements of T will be called closed elements. If a  L and n  T and a  n, then n is called remote 

nhd (RN) of a. All remote nhds of a will be denoted by n (a) and n (a) is a base on L. The pair (L, T) is called a topological 

atomistic lattice (TAL). Wang Guojun) [1989] introduced closure operator in the lattice theory in the light of the definition of that 

of J. C. C. Meckinscy and A. Tarki [1947], Lal and Jha [1975, 1983], Jhs and Singh [2008], 

Definition 1.5: [Jha & Parhi 2003]. Let (L, T) be a TAL and x  L. Then the meet of all closed elements which contain x is called 

the closure of x and will be denoted by x ̅. An element c  L is called component of a  L if c immediately preceeds a, i.e., for 

every b  L, c  b  a  b = c. The set of all component of a  L is denoted by πa. The component of 1 is called the maximal 

point of L and the set of all maximal points of L is denoted by πL. Let L be a complete lattice and a  L, B  L, B is called 

minimal family a if 

(1) Sup B = a and  

(2)  A  L and a  Sup A  for each x  B there exists a z  A such that x  z. For each a  L, the greatest Minimal family 

B ( L) will be called the standard minimal family a and will be denoted by B*(a) 

Definition 1.6: [Jha and Parhi, 2003] Let L1 and L2 be two complete atomistic distributive lattices. Let f : L1  L2 be a mapping. 

Then f is called from L1 to L2 if  

(1) f (a) = 0 iff a =0 

(2) f is join preserving  

(3) f -1 is join preserving, where f -1: L2  L1 is defined by 

 f -1 (y) =  {x  L1: f (x)  y} for each y L2, 

The following are the results proved by Jhs and Parhi (2003) in a TAL (L, T) 

(1) Let a  L1, a  o. Then for each b  L1, b  a, there exists a component c of a with b  a. Further more, there exists a 

unique component c of a with b  c iff the different components of a are disjoint. 

(2) For each a ∈ L, the different components of a are disjoint iff L is up-total order, i.e., for each b  L 

   b = {x  L: b  x} 
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 is a total order set about  

(3) For each x  L, a  L is called an interior point of x iff there exists  

 x  n(a) such that n ∨ x =1. Define x0 = V {a  L : a is an interior points of x} and we call x0 the interior of x. Obviously 

a0  a.  

(4) If a is an interior of x with a  b (a, b  L). Then b is called an interior point of x. 

(5) For each x, y  L, 

(I)  10 = 1, 00 = 0 

(II)  x  y  x0  y0 

(III)  (x0)0 = x0 

(IV) If L is up–directed, then (x  y)0 = x0  y0 

 (6)  An element x  L is called a semi-closed element if for each t  T with t  x  1, there is an s T- {1} such that x  t  s. 

The set of all semi-closed elements is denoted by SC (T). Let a  L, t  SC (T) and a  t. Then t is called a semi-remote 

nhd (SRN) of a. All the semi-nhds of a will be denoted by n*(a)  

 In a TAL (L,T): 

I.  A closed elements is semi-closed.  

II.  The meet of an arbitrary family of semi-closed elements is a semi-closed element. 

III.  The join of two semi-closed elements is semi-closed. Further the join of a semi-closed and a closed element is semi-

closed and also the meet of them is a semi-closed element. 

(7)  Putting F (T) = {x  SC (T): for each s  SC (T) and x  s  SC (T)} we observe that F (T) is cotopology on L and T F 

(T). 

(8) Let (L, T) be a TAL. If T1 is an other topology L and SC(T1) = SC(T). Then T1  F (T). For each t  SC (T)-{1}, there 

exists an s  T-{1} such that t  s. Moreover SC (F (T)) = SC (T). F (T) is the finest Cotopology among those Cotopologies on L 

which generates the same SC (T). The semiclosure of an element x in a topological atomistic lattice (L, T) is defined as 

 Sclx =  {y  SC (T): x  y} 

The following properties hold: 

I The Sclx is a semi-closed element for each x  L 

II An element x is semi-closed iff Sclx = x 

III  x  Sclx for each x  L 

IV Scl = 1, Scl = 0 

V Scl (Scl x) = Scl x 

VI Scl (x  y)  Scl (x)  Scl (y) 

VII Sclx Sclx x    

VIII When one of x and y is closed,  

 Scl (x  y) = Scl x  Scl y. 

(9)  Let (L, T) be a TAL and a  L, then a is called an s-adherence point of x (or semi-adherence point of x) if for each t  

n*(a), x ≰ t. If a is an s-adherence point of x and a ≰ x or a  x but for b  L such that a  b  x. We have x ≰b  t, then 

a is called an s-accumulation point of x. The join of all s-accumulation of x is called the semi derived element of x and 

will be denoted by dsx. We have  

I. a  Scl x iff a is an s-adherence of x 

II.  Scl x = {a: a is an s-adherence of x} 

III. Scl x = x  dsx. 

IV. For a semi-closed element y  L, if y0  x  y then x is a semi-closed element.  

V. Let (L, T) be a TAL with up-total order and x  L, be a semi-closed element. Then (x ̅ )0  x ̅  x 

VI. Let (L, T) be up-total order and x  L, x is semi-closed element iff there exists a closed element y such that  

 y0  x  y 

10. x is semi-closed iff (x ̅)0  x Also x is semi-closed iff (x)0  x 

Definition 3.1: Let (L1, T1) and (L2, T2) be two TALs. Then a mapping ƒ: L1→L2 is said be S-open (res. S-closed) if the image of 

every semi-open (res. semi-closed) element in L1 is semi-open (res. semi-closed) in L2. 

Obviously a semi-open (S-open) function is open.  

Next, we define 

Definition 3.2: An element þL is called a boundary element of an element a  L if and only þ  a ̅  a ̅ c. The union of all the 

boundary elements of a is called a boundary of a and is denoted by Bda. It is clear that 

 cBda a a    

Where (L, T) be a TAL. 

We now introduce the notion semi boundary of an element a in a TAL 

Definition 3.3: Semi boundary (briefly s Bd) of an element a in a TAL (L,T) is defined as 

 S Bda = Scl a  Scl ac 

In the following, we characterise S-open mappings in terms of Sint, Scl, SBd 

Theorem 3.4: Let (L1, T1) and (L2, T2) be two TALs For a function ƒ: L1 → L2 the following statements are equivalent for every a 

 L1 and b  L2: 

(1) ƒ is S-open 

(2)  ƒ (Sint a)  (ƒ (a))0 

(3)  Sintƒ -1 (b)  ƒ -1 (b0) 

(4) 1 1( ) Scl ( )f b f b   
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(5)  ƒ -1(Bdb)  SBd (ƒ -1(b)) 

Proof : (1)  (2) Obviously ƒ (Sint a)  ƒ (a). ƒ is S-open gives ƒ (Sint a) that is open in L2. But (ƒ (a))0 is the largest open 

element such that (ƒ (a))0  ƒ (a). Therefore ƒ (Sint a )  (ƒ (a))0 for any aL1. This gives (2) 

(2)  (3) For any b  L2, ƒ -1(b)  L1. Then by (2)  

  f (Sint ƒ -1(b))   ((ƒ -1 (b)) 0  b0 

or  ƒ (Sint ƒ -1 (b))  b0 or Sint ƒ -1 (b)  

    ƒ -1 ƒ (Sint ƒ -1 (b))   ƒ -1 (b0) 

or  Sint ƒ -1 (b)  ƒ -1 (b0) This gives (3) 

(3)  (4). By (3), we have 

 Sint ƒ -1 (b)  ƒ -1 (b0)  

 (ƒ -1 (b0))C  (Sint ƒ -1 (b)) C  

   Scl (ƒ -1 (b)) 0  

Or  1 0 1( ) Scl ( )c cf b f b   

Or  
1 1( ) Scl ( )c cf b f b   

Or  1 1( ) Scl ( )f x f x  , where x = bc 

which is an element of L2. This gives (4) 

(4)  (5) For b  L2 

 cBdb b b  Bdb = b  bc is closed in L2
 

Now 1 1 1( ) ( ) ( ),cf Bdb f b f b     

Using (4), we have 

 ƒ-1(Bdb)  Scl (f -1(b))  Scl (f -1(bc)) 

or ƒ -1(Bdb)  Scl f -1(b)  Scl (f -1(b))c =SBd ƒ -1 (b) 

This gives (5) 

In following, we give characterisation of S-closed mapping as follows: 

Theorem 3.5: Let (L1, T1) and (L2, T2) be two TALs. A function ƒ: L1  L2 in S-closed if and only if ( ) (Scl )f x f x , for each x 

 L1 

Proof: Obviously ƒ (x)  ƒ (Scl x), ƒ (Scl x) is closed, since ƒ is semi-closed. But ( )f x  is the smallest set with ( ) ( )f x f x . 

Therefore, ( ) (Scl )f x f x  

Conversely, x  L1 is a semi-closed element  

  ƒ (x) is closed 

By hypothesis ( ) (Scl ) ( ) or ( ) ( )f x f x f x f x f x   . 

This proves that ƒ (x) is closed. 

Theorem 3.6: If a function ƒ: L1  L2 is S-closed, then for each b in a TAL (L2, T2 ) and semi-open element u in a TAL (L1, T1) 

with u  ƒ -1 (b), there exists an open element v in L2 with v  b and ƒ -1 (v)  u. 

Proof: Let u be an arbitrary semi-open element in L1 with u  ƒ -1 (b), where b  L2. clearly (ƒ (bc))c = v (say) is open in L2. Since 

ƒ -1 (b)  u, then straight forward calculation give that b  v. Moreover, we have  

 ƒ -1 (v) = ƒ -1 (ƒ (uc))c = (ƒ -1 ƒ (uc))c  u  

or  ƒ -1 (v)  u. 

Theorem 3.7: Let f: L1 → L2 be a surjective function from a TAL (L1, T1) to a TAL (L2, T2). If for each b L2, and each semi –

open element u with u ≥ f -1(b), there exists an open element v  L2 with v ≥ b such that f -1(v) ≤ u, then f is S-closed.  

Proof: Let ω be an arbitrary semi-closed element in L1 and y  (f(ω)c. Then 

 f -1 (y) ≤ f -1 (f(ω)c = (f -1f(ω)c ≤ ωc   

or  f -1(y) ≤ ωc.  

Since ωc is semi-open, therefore there exists an open element vy with y  vy such that f -1(vy) ≤ ωc. Since f is subjective, we have  

 y  vy ≤ (f (ω)c.  

Thus (f (ω)c ) = V{vy | y  (f (ω)c )} is open in L2 or (f (ω) is closed in L2. Taking vy = v, it is proved that f is S-closed. 
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